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Synopsis 

It is shown how the global deformation mechanism in filler-loaded vulcanizates were modified 
by additional filler-to-matrix bonds. A quantitative description is given in terms of an extended 
van der Waals treatment including the formulation of a reduced mechanical equation of state. An 
interpretation of the Mullins softening is presented. 

INTRODUCTION 

To show symmetries on many planes is the reason behind the rubber’s 
universal behavior on deformation: 

the strain energy is equiparted over the subsystems of deformation; 
the phantom-chain model is found to be appropriate for describing the 
strain energy per chain; 
finite chain length-and global interactions-have to be described with the 
aid of a van der Waals approach that also allows us to formulate a reduced 
mechanical equation of state; 3-5  

rubbers behave like “elastic liquids,” thus showing no defect contributions 
to the strain energy at all: The strain energy is of “global origins.” 

Every interpretation of stress-strain pattern of rubbers is therefore equiv- 
alent in discussing the global deformation mechanism alone. 

For composites like filled rubbers additional effects come into play originat- 
ed with the operation of the solid particles plunged into an elastically soft 
rubber matrix. Quasipermanent adhesion to the surfaces of the filler particles 
always granted, a definite boundary value problem comes into existence. 
Based on ideas of Einstein and Smallwood,6-8 the boundary value problem 
can fortunately be brought to a very universal descripti~n.~~ lo Excellent 
chances are therefore given for drawing from an analysis of the stress-strain 
pattern how deformation mechanism and colloid structure are related. 

It was found that the displacements of the filler particles were enforced into 
are different for different filler-to-matrix c~ntacts.~.  lo Two limiting cases have 
been studied: 

the “ filler-network,” that is constituted by only linking the polymer to the 
filler particles so as to form rigid crosslink bunches of extremely large 
functionalities; 
the “filled rubber,” where solid colloid particles and crosslinked matrix 
contact on each other by adhesion. 
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Both of the composites display an inverse reinforcement: Showing at  
smallest strains no strengthening at  all, the filler network is then observed to 
become continuously reinforced at  elevated strains, hence behaving inversely 
as to  what is known to happen in filled  rubber^.^-^^ 

This paper aims to extend the state of knowledge by studying filled rubbers 
wherein the solid particles were additionally linked to different degrees to the 
matrix (“ filler-network-rubber”). To come to a full description of quasistatic 
deformation cycles on the use of an extended van der Waals approach there is 
an outstanding chance of interpreting the stress-strain pattern in terms of 
parameters that characterize the way the elements within the composite 
cooperate on deformation. It should be checked whether it is possible to bring 
along these lines the Mullins softening to a finer understanding. 

THEORY 

Every interpretation of deformation in filled systems is based on the 
knowledge of how rubbery matrix and filler particle ensemble act on each 
other. What is not easily brought to a description in all details are the 
collective processes the filler particles themselves are submitted to. What 
simplifies any description is the experience that the quasistatic deformation of 
the composite depends uniquely on the macroscopic strain.g, lo 

When static equilibrium is achieved, the deformation in the composite has 
to run such as to match the mechanical equilibrium condition 

with A,, and A, as the elastic strain parameters of the filler particle ensemble 
and of the rubbery matrix. 

The filler ensemble is very often submitted to large plastic rearrangements, 
leading to the total strain 

h o t  = 

where plastic components in general increasingly exceed the tiny Hookian-type 
elastic deformation of the filler particles themselves. 

In spite of not exactly knowing the mechanism running off in the filler- 
particle’s ensemble, it is possible due to relation (1) to interpreting 
the stress-strain behavior of filler-loaded vulcanizates by only describing the 
response of the rubbery matrix. With the aid of the van der Waals network 
model,2*9s10 the characterization of the rubbery matrix can be made quantita- 
tive by defining the maximum chain extensibility, by characterizing global 
interactions, and by formulating how the intrinsic matrix strain and the 
macroscopic extension are related. 

One point to  be stressed is that the maximum chain extensibility should be 
determined by the configuration of the whole set of permanent crosslinks 
essentially embracing the bunches of filler-to-matrix bonds formed by the 
numerous chains which emerge from each of the solid colloid particles. Hence, 
for describing the deformation of filled systems two questions should be 
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answered: 

What are the ways of cooperation between the crosslink bunches and the 
rubbery matrix? 

Can this cooperation be interpreted in terms of an “equivalent network”? 

When coming to a positive answer in regard to the last point every 
description is simplified by taking advantage of all of the known symmetries 
of molecular networks. 

The Maximum Extensibility 

For networks in use the modulus is found to uniquely be determined by the 
density of subsystems of deformation (in the simplest model taken to be 
identical with the network chains): ‘3 2* 9, lo, 23 

where R is the gas constant, T the absolute temperature, and P a factor by 
‘ which unknown effects on the energy storage properties should be accounted 

for. With the molecular weight of the stretching invariant unit, M,, the 
average molecular weight of the energy-equivalent chains, M,, can be related 
to  the average molecular weight of the statistical Kuhn segment, M,, accord- 
ing to2,9,10 

M ,  = Y,M, = Y,PM, (4) 

where the maximum chain extensibility is then expressed by 

so that the maximum strain of the network chain is believed to be approx- 
imated by the use of the Gaussian chain m0de1.l.~~ On the use of these 
definitions we are led to rewrite the modulus as given in eq. (3): 

For filler-network-rubbers new aspects come into play: According to Figure 
1 all of the crosslinkages within a single filler-to-matrix bunch are strictly 
bound to the displacement of the solid particle itself. It is easily realized when 
the polymer matrix is not crosslinked (“filler-network”) that most of the 
chains of different lengths included in each of the filler-to-matrix bunches are 
therewith brought into states of different “conformational energies,” due to 
“ nonaffine” conformations the tie molecules were forced into. 

It is not a trivial result that we succeeded, nevertheless, in giving a 
quantitative description of the stress-strain curves observed during the first 
stretch of filler-networks with varying volume fractions of equally sized filler 
particles: This is equivalent as to have nearly the same type of the chain-end- 
to-end distance distribution in all states of deformation so that the strain 
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filler -network filled - rubber 

Fig. 1. Schematic drawings of (a) a filler-network and (b) a filled rubber. 

energy can on the average invariably be related to an “equivalent network” 
assumed to be comprised of phantom chains of uniform lengths (identical with 
the average chain length within the filler-network). 

When the rubber matrix is in addition bound to the filler particles, the 
question arises how the deformation energy is now stored in such “filler-net- 
work-rubbers.” Having the filler-to-matrix bond bunches cooperating in a 
well-defined manner with the rubber, it is reasonable to believe that “energy- 
equivalent subsystems” were formed. 

To describe the “equivalent network” i t  is convenient to define the density 
of the permanent energy-equivalent units by writing 

v = v, + v, (7) 

where v, is the crosslinkage density within the rubber matrix while v, de- 
scribes the density of the permanent crosslinks at  the filler surfaces related to 
the whole rubber matrix. In terms of the van der Waals maximum strain 
parameters, we are thus led to 

(A , , ) -2  = ( A J 2  + k ( x , f ) - 2 ,  0 < k < 1 (8) 

A,, represents the maximum strain parameter of the equivalent network, A, 
that  one within the rubbery matrix while A,, describes the maximum strain 
parameter originated with tie molecules between next filler particles. It is then 
that the filler-network-rubber is additionally strengthened. The degree of 
additional “reinforcement” should depend on the surface density of the 
crosslinks attached to each of the filler particles described with the aid of the 
parameter k ( k  = 1 assigned to the maximum density of filler-to-matrix 
contacts). 

The maximum strain parameter of a filler-network A,, can straightfor- 
wardly be computed when spherical filler particles with the radius R, were 
homogeneously distributed across the system’s volume. A,, is then predicted 
to  depend on the volume fraction of the filler 21 and the surface density 
function a( R , ) according to” 

We learn from Table I that the maximum strain parameter in filler-net- 
work-rubbers should substantially decrease when the volume fraction of 
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TABLE I 
The Maximum Strain Parameter of Filler-Rubber Networks (k = 1) 

o/filler-vol. fract (bf )2 (Ld2 
0.00 
0.01 
0.05 
0.10 
0.20 
0.30 

Infinite 
654 
308 
207 
128 
89 

100 
87 
76 
68 
56 
47 

( A m y  = 100 

k = l  
2a(R,)Rf = 180 

TABLE I1 

Prescription DIV 50 A B C D E 

Perbunan 3307 100 
Zinkoxide active 4 
ASM DDA 1 
Stearin-acid 1 
Plasticizer N 61 15 
Vulkasil N 30 
Si A 189 - 0.75 1.5 2.25 3.0 
K 0 0.25 0.5 0.75 1 .o 
Accel. J 3.2 
Accel. MBIS 1.65 
Rhenocure S 1.5 
Vulcanometer 

Vulcanization 165°C 35‘ 25‘ 20‘ 15’ 1 0  
160°C (t, , ,  k5) 11.5/27.5 7.5/18.6 3.6/13.8 2.3/9.90 1.8/7 

equally sized filler particles is increased whereby each of the filler particles is 
assumed to be linked to its maximum degrees ( k  = 1). 

It would be extremely satisfactory if the apparent modulus would correctly 
be predicted on the use of 

The assumption would therewith be justified that the global kinetical 
energy within the equivalent network is equiparted across the effective sub- 
systems of deformation. The apparent modulus shows then the “classical 
symmetry of being proportional to the total density of the subsystems.” On 
saying this, one has to keep in mind that the density of the subsystems of 
deformation within the equivalent network is no more given by the number of 
chains present: “Tie molecules” between the filler particles Gerate as ad- 
ditional “functional elements” comprising numbers of chains which run as 
subsystems within the rubbery matrix too. 

From this consideration it comes out clearly that 

the modulus of networks can only be related to the density of the actual 
chains if there is a unique “functional network structure” wherein chains 
operate as the subsystems of deformation without forming clusters linked 
by tie molecules. 
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The Interaction Parameter of the Filler-Network Rubber 

Chemical crosslinks bound to the filler surface cannot fluctuate a t  
These crosslinks do not contribute to global interactions within the rubbery 
matrix. When now relating the van der Waals correction term to the repre- 
sentative subsystem of deformation, the average global interaction parameter 
of the filled-network-rubber should become reduced since it has been shown 
that the van der Waals interaction parameter disappears in filler-networks 
(constituted by nonfluctuating filler-to-matrix-bond bunches). 

To arrive a t  an explicit formulation of the average interaction parameter, 
we ask of the relative fraction of each of the filler-surface crosslinks 

Since the fluctuation of crosslinks is found to uneffected by the presence of 
the filler  particle^,'^ the average interaction parameter is then straightfor- 
wardly given by 

( a )  = xu, (12) 

where a,  is taken to be the interaction parameter of the unfilled rubber 
matrix. For filler-networks without any global interaction,’ we are conse- 
quently led to 

lim ( a )  = 0 
k-1 

while for filled rubbers we are led to the trivial identity 

lim (a) = a ,  (14) 
k-0 

The Intrinsic Strain within the Rubbery Matrix 

The soft rubber matrix must be “overstrained” for satisfying the condition 
of mechanical equilibrium as formulated by eq. (1). To achieve a mathematical 
description, i t  is profitable to first ask of the asymptotic situations a t  
minimum and maximum strain. These limits fixed, the full mathematical 
formulation of the intrinsic strain is then easily disposed of. 

To consider the rubbery matrix as incompressible is the condition by which 
in the mode of simple extension a single independent strain variable is left. 
This independent variable is reasonably chosen to be identical with the 
intrinsic strain in the rubbery matrix A,. Its analytical formulation is given 
by 9,10 

A, = ( A  - uc) / ( l  - uc) (15) 

[with ui characterizing the deformation mode i. For both of the limited 
systems, the filler-network and the filled rubber, ui is then written as 

u, = [ ( A  - I)/( A,, - l ) o ]  filler-network ( ui = ur ) 
(16) 

u, = ( o/A)1’3 filled rubber ( ui = u,) 
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The inverse deformation behavior for both of the network types is easily 
deduced from these relations: Not showing reinforcement a t  smallest strains is 
typical for filler networks, a t  raised strain becoming increasingly strengthened 
so as to finally approximate the “Bueche mode”: 

A filled network, on the other hand, shows fading reinforcement approach- 
ing at largest strains the affine transformation of the composite.’ 

Behind that inversed deformation behavior, there are different deformation 
mechanisms originating with modified transformation modes of the filler 
particle’s ensemble. It is indeed reasonable a finding that permanent filler-to- 
matrix-bond bunches in filler-networks induce operations different from the 
mechanism as observed in filled rubbers where the filler-to-matrix contacts are 
made by adhesion. 

It suggests itself to assume that the filler-network-rubber should display an 
“intermediate” behavior. The simplest ad hoc assumption is to postulate 
additivity in the extensive variables as defined by 

1/3 
U f r  = [xu, + (1 - x)u,] 

which might be taken as consequent within the logical demands of the 
equivalent network idea: a weighted superposition of the mechanism of both 
of the limiting models. 

The Einstein-Smallwood Correction 

It has been thoroughly discussed that the above “ two-phase approach” 
neglects the physical consequences which unevitably arise when filler and 
polymer matrix act on each other by adhesion. To describe this boundary 
value problem, we take advantage of the ingenious treatments of Ein~tein‘,~ 
and Smallwood,’ along these lines being led to 

A,,, = A , J l  + C u ) p 2  

where C is the universal Einstein coefficient. For spherical colloid particles, C 
is assigned to the value of 2.5.6*7,g,’8 What is extremely satisfactory is the 
finding that the “ Einstein-Smallwood correction” as defined in eq. (18) seems 
indeed not to depend on the filler particle size in excellent accord with the 
demands of this mean-field approach. Form anisometry of the particles 
determines to which value the Einstein parameter C should be assigned. 

The van der Waals Equation of Filler-Network-Rubbers 

We are now in the position to formulate the van der Waals equation of state 
for filler-network-rubbers in the mode of simple extensiong, lo 
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where 
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The network is reinforced in a twofold manner, on the one hand, due to the 
Einstein-Smallwood factor 1 + Cu, and, on the other hand, due to having the 
rubbery matrix "overdrawn" according to 

A, = ( A  - u) / ( l  - u )  (22) 

Anticipating the later treatment of the Mullins softening, we like to stress 
here that the above eq. (20) is only appropriate for describing the first stretch 
of a filler-network-rubber system. 

THE REDUCED MOONEY REPRESENTATION 

A discussion of the stress-strain behavior of filled systems in terms of a 
reduced mechanical equation of state provides some interesting and novel 
insights. 

To derive the reduced mechanical equation of state in the mode of simple 
extension, let us rewrite the equation 

f /G+  = ( ~ m , u ) - 2 ( 1  + WTD,f ,P / (1  - P )  

- ( A m f , ) - " l  + w ( a ) T ( D , f , ) 2 P 2  (23) 

P = W D m f ,  

by introducing the symbols 

We are then led to 

f = f /G+  = T+p/(l - p )  - a+p2 (25) 
where 

G+ = pR/Mo 

Asking of the critical parameters, we have to seek these variables from the 
conditions 

d2f+/dp2 = 2T+(l - p L , ) - 3  - 2 a +  = 0 
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here from being led to 

p c  = 1 / 3 ,  ( f + ) c  = ( T f ) J 8  = a+/27, (T’)c  = 8a+/27 (28) 

From the last one of these relations we derive with the use of eqs. (23) that for 
each critical system the condition 

8(a)D,,,/27 = 1 (29) 

must be fullfilled. Accepting that the temperature dependence of the stretch- 
ing invariant unit ( M o )  is comparatively irrelevant, we come to the very 
interesting condition 

d ( a ) / d T  = 0 (30) 

That means that 

the interaction parameter in the van der Waals equation of state should 
nearly be independent on the temperature, the “fluctuation term” is grow- 
ing in proportion to temperature according to 

a+ = ( 1  + Cu)(a)T (31)  

Defining the reduced variables by 

t = T + / ( T + ) ,  = T/Tc (33) 

f = f + / ( f + ) c  (34 )  

the reduced mechanical van der Waals equation of state is straightforwardly 
derived to be given by3-5 

f = d [8td/(3 - d )  - 3 d ]  (35) 

By means of theoretical data of filler-network-rubbers calculated under the 
condition to keep the maximum strain parameter A,,, constant, it  is illustrat- 
ed in Figure 2 that thermodynamical stabilization is brought about when the 
surface density of the filler crosslinks is raised to higher values. Growing 
distance to the critical stress-strain curve ( t  = 1 )  is a simple measure of 
increasing stability. 

Due to these effects the slope in the reduced stress strain curves is de- 
pressed, very soon changing its sign to negative values. 

The apparent Mooney-Rivlin coefficient C, can be shown to be uniquely 
related to both of the global van der Waals parameters A,,, and a. The C, 
determination at  constant degrees of crosslinking can thus be used for 
characterizing the average crosslink fluctuation uniquely determined by the 
average functionality of the crosslinkages.”. 25, 26 
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- c-ritical curve ’ 1 

t = l  05  1 
Fig. 2. Filler-network-rubbers stress-strain curves in terms of the reduced variables calcu- 

lated with the aid of eq. (35) on the use of the parameters: a = 0.15; Go = 40 MPa; C = 2.5; all 
the other parameters are indicated in the figure. 

To have the crosslinks fluctuations as destabilizing factor in van der Waals 
networks (filled or unfilled) leads to the interesting consequence that for 
sufficiently large fluctuations a phase-transition is predicted to occur.’ Disre- 
garding thermal expansion and compressibility, the entropy only “jumps” at  
the phase transition. This also occurs in filled systems so that it is elucidated 
that such heterogeneous colloid-systems show the same topological phase- 
transition phenomena as a single component system. 

A consequence of general interest is to have shown on hand of our model 
that energetical attraction is not necessary for getting a phase transition: The 
“ nonstable van der Waals network” represents an outstanding model system 
which might undergo a phase transition that purely originated with entropic 
origins. 

STRUCTURE-STRESS-STRAIN CORRELATION 
Increasing average crosslinking densities per filler particle were described 

with increasing values of the parameter K defined in eq. (6). Starting with the 
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I 

0 0.5 1 

Maximum - reinforcement - k -  

Fig. 3. Apparent small-strain modulus of filler-network-rubbers with an invariant total 
number of crosslinks against K ,  the fraction of the filler-co-matrix crosslinks per filler surface: 
c = 2.5; a = 0.2; A,,,, = 9.22. 

maximum modulus at k = 0 (filled rubber mode), the apparent small-strain 
modulus of filler-network-rubbers is theE continuously depressed to lower 
values, reaching its minimum in the filler-network linGts for k = 1 (see Fig. 3). 

At large extensions, this situation is found to be inversed what is demon- 
strated with the crossing over in the reduced Mooney plat drawn out in Figure 
4 calculated with the aid of 

Hence we are led to the statement: 

The global properties for rubbers with the same density of permanent 
crosslinks and the same filler-volume fraction c3.n be manipulated by chang- 
ing the fraction of permanent contacts to the filler particles. 

The resulting reduced stress-strain patterns lie in between the limits that 
are fixed by both of the “antipodes,” the Eller-network and the filler rubber 
(see Fig. 4). 

It is important to realize that 

the apparent small strain modulus can only uniquely be related to the 
actual density of the permanent crosslinks if the network is homogeneous. 

By this result it  is suggested that global inhomogeneties in real networks that 
operate on principles similar to filler particles might be one of the reasons 
behind the problem of not always being able to uniquely relate the modulus to 
the density of permanent crosslinks. 
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f ’  
11 + CVIT  
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2 

Fig. 4. Mooney plot of various filler-network-rubbers with a constant total number of 
permanent crosslinks against the fraction of “filler bounds.” The parameters as given with 
Figure 2. 

THE MULLINS EFFECTS 

A pronounced hysteresis observed in the first stress-strain cycle of filler 
rubbers (Fig. 5) manifests irreversible processes even for experiments that 
were done under quasistatic c~ndi t ions .~ .” -~~ The next constant strain rate 
cycles are then always nearly reproduced showing in general a weak hysteresis 
mainly originated with relaxation (see Fig. 5). 

A phenomenological treatment of this effect was given by Mullins 
et al.15-20p27 while Bueche has offered an molecular-statistical interpretation 
based on the discussion of tearing loose or breaking of tie molecules between 
filler particles.l’* l4 

Stretching microcalorimeter investigations give strong evidence that the 
rubbery matrix is under quasistatical conditions brought into the state of 
internal equilibrium.2s The Mullins softening must therefore be originated 
with irreversible global constraints developed during the first stretch. 

The Intrinsic Strain 

As a concrete model, let us asume that the filler particle’s ensemble is 
irreversibly brought into a configuration that should stay invariant on shrink- 
ing and redrawing so as to keep the strain-induced filler ensemble’s processes 
characterized by a fixed ratio of the plastic to the elastic components unal- 
tered. In terms of the intrinsic strain as defined in the eq. (22), we should thus 
believe that it is appropriate to write 
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Fig. 5. Stress-strain cycles of a styrene-butatiene rubber at room-temperature. 

where 

Since A,, and A,,, are constant for A I A,,, all of these processes are 
understood as a response of a composite showing a quasipermanent global 
structure. The “history of the prestretch” up to A,, seems to be frozen in 
due to constraints which cannot be unlocked by weak inherent rubber-elastic 
retracting forces. 

After the first unloading (see Fig. 5), a small remanent strain is observed to 
be left. Since no distinct understanding in terms of our model is available, we 
account empirically of this effect by extending eq. (36) to the form 

A,- = (A - A, - u-)/(1 - u - )  (39) 

where A, has to be drawn from the experimental results. 

The Smallwood-Einstein Effect 

To arrive at a quantitative interpretation of the Mullins softening, it turns 
out to be necessary to consider another irreversible phenomenon. We assume 
that the bound rubber will also be only deformed during the first stretch, 
being left on shrinking or redrawing under the condition of A I A,, in a 
frozen state of deformation. Strain energy is thus believed to be stored within 
glassy layers encapsuling each of the filler particles. In the first stages of 
shrinking, a minor reorganization assumed to be just allowed, fading quickly 
out with increasing degrees of shrinkage, these processes may be described 
with the aid of 
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where 6 is considered a phenomenological parameter that must be adjusted to 
get a best fit to the experiments. 

COMPARISON WITH EXPERIMENTS 

The quality of fitting calculations to experiments with the aid of the eqs. 
(21), (38), and (39) is to be seen by evidence from the plots drawn out in 
Figure 6. 

According to our representations, the Mullins softening is interpreted by 
three irreversible effects 

irreversible elements in the strain-induced reshuffling of the filler-particle’s 

the peculiar “one-way” deformation of the bound rubber, 
the effects behind the remanent strain. 

configuration, 

The interpretation presented applies equally well in all cases including 
rubbery systems with a very different colloid structure. The bound rubber is 
always present, apparently operating in a very universal manner: 

The Einstein-Smallwood effect is well represented by a mean-field ap- 
proach showing no particle-size dependence in the maximum strain modifi- 
cation. 
The properties within the interfacial layers do not depend on the kind of 
the interfacial contacts whether there are permanent chemical bounds, 
contacts by adhesion, or a mixture of both of them. 
The effects are identical and independent of the type of the global deforma- 
tion mechanism. 
T o  freeze deformed states of matter seems to represent a general phenome- 

Fully analogous arguments can be put forth in discussing the filler particle’s 
transformation. Constraints were developed which are quasipermanently 
trapped after the first stretch so that on shrinking or redrawing there exists a 
quasipermanent colloid structure provided that the strain is kept below the 
maximum strain enforced with the first stretch. 

It is much surprising that the totality of the deformation mechanism in 
rubber-fillers networks can be described on the basis of two limiting models, 
the filled rubber and the filler-network. It is that permanent subsystems of 
deformation become operative in any case such that an equivalent network 
can always be defined showing symmetries like homogeneous networks (as for 
example gaslike conformation behavior or the equipartition of kinetical energy 
on the global level). The density of the subsystems of deformation is not in 
each case represented by the chains themselves. In filler-network- 
rubbers network, the “matrix chains” store additional energy as segment of a 
“ tie molecule” which operates predominantly between the next filler particles. 
Filler-network-rubbers show therefore global mechanism of a more complex 
nature. Every modification of the fraction of the filler-to-matrix bonds brings 
about global system properties lying between the limits as fixed by the filled 
rubber and the filler-network. 
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Fig. 6. Stress-strain cycles of filler-network-rubbers with a constantly crosslinked natural- 
rubber matrix with additional filler-to-matrix bonds. The fraction of these bonds related to its 
maximum value is indicated with each of the drawings (parameter h): (---) calculated with the aid 
of eqs. (19), (39), and (40) on using the parameters 6 = 5; a ( R f )  = 120; (-) found. 
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E l  k = 0.5 
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(e) 

Fig. 6. (Continued from theprevwuspage.) 

The quasistatic constrained equilibrium states known, hope is engendered 
that the time-dependent phenomena could finally be interpreted by extending 
and applying the generalized relaxation theory developed recentl~.~' 

FINAL REMARKS 

Our description of the stress-strain pattern of filler-rubber networks brings 
out a set of interesting principles. 

The question arises as to how a molecular interpretation of cooperative 
deformation mechanism in rubbery composites could be developed. I t  is in 
evidence that general principles should be implied. I t  could for example be 
suggested that the deformation mechanisms-structure relationship, its being 
uniquely related to the macroscopical strain, could be understood, by the use 
of an extremum principle. To define the affine transformation as the minimum 
strain-energy mode of a filler-network appears to be self-evident, but the 
question is automatically provoked as to how the maximum reinforcement in 
the Bueche mode can be brought to a finer understanding. Clearly, a molecu- 
lar interpretation of the "one-way constraints" is wanted, also since stretch- 
ing-microcalorimeter measurements give evidence that the molecular-statisti- 
cal model as given by Bueche"7l4 cannot correctly account for the experimen- 
tal energy-balance characteristics. 

On seeking a molecular model interpretation, the treatments presented here 
may be helpful, essentially also due to their identifying the two global effects 
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that seem to govern the deformation phenomena: 

The filler-matrix cooperation with its quasistatically irreversible individual 
mechanism determined by the type of the permanent crosslink configuration 
(crosslink bunches implanted into a polymer network); 
The irreversible Einstein-Smallwood bound-rubber effects. 

We are greatly obliged to Dr. Volker Haertel of the METZELER-Kautschuk GmbH for his 
kind assistance in preparing the samples. We thank the Deutschen Kautschuk-Gesellschaft for 
the generous support and promotion. 
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